Advanced Topics in Condensed Matter

Lecture 2: Crystal lattices and structures

Dr. Ivan Zaluzhnyy Prof. Dr. Frank Schreiber

EBERHARD KARLS UNIVERSITÄT TÜBINGEN

Periodicity

M. C. Escher, Regular Division of the Plane #25 (1939)

Periodicity

Translation symmetry

M. C. Escher, Regular Division of the Plane #25 (1939)

Periodicity M. C. Escher, Regular Division of the Plane #25 (1939) WiSe 2024/25 J PHY-VFATCM 4

Crystal lattice

 $\vec{R}_n = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3$

| WiSe 2024/25 | **PHY-VFATCM**

Crystal lattice

Lattice - an infinite array of discrete points, generated by a set of discrete translation operations: $\vec{R}_n = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3$

Rotational symmetry

Only rotational axes of orders n = 1, 2, 3, 4, 6 are possible

Rotational symmetry

 $ka = a - 2a\cos\beta$ $\cos\beta = \frac{1-k}{2}$ k = -1, 0, 1, 2, 3 $\beta = 0, \frac{\pi}{3}, \frac{\pi}{2}, \frac{2\pi}{3}, \pi$

Only rotational axes of orders n = 1, 2, 3, 4, 6 are possible

Crystal lattice

<u>Lattice</u> – an infinite array of discrete points, generated by a set of discrete translation operations: $\vec{R}_n = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3$

<u>Unit cell</u> – a volume, a repetitive arrangement of which (pure translations, i.e. $\vec{R}_n = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3$) can fill the whole space without overlaps and gaps.

| WiSe 2024/25 | **PHY-VFATCM**

Primitive unit cell – one lattice cite per cell

| WiSe 2024/25 | **PHY-VFATCM**

Conventional unit cell – contains the full symmetry of the lattice and include more than one lattice point

Crystal systems in 2D

5 Bravais lattices are possible in 2D.

| WiSe 2024/25 | **PHY-VFATCM**

Crystal systems in 3D

Orthorhombic

b

1/

α

b

Triclinic

a

a

Blc

Tetragonal

Cubic

С

Bravais lattices in 3D

14 Bravais lattices are possible in 3D.

Crystal Family	Lattice System	Schönflies	14 Bravais Lattices						
			Primitive (P)	Base-centered (C)	Body-centered (I)	Face-centered (F)			
Triclinic		Ci	$ \begin{array}{c} $						
Monoclinic		C _{2h}	$\beta \neq 90^{\circ}$ $a \neq c$ $a \neq c$ b	$\beta \neq 90^{\circ}$ $a \neq c$ $a \neq c$ b					
Orthorhombic		D _{2h}	$a \neq b \neq c$	$a \neq b \neq c$	$a \neq b \neq c$	$a \neq b \neq c$			
Tetragonal		D _{4h}	$a \neq c$		$a \neq c$				
Hexagonal	Rhombohedral	D _{3d}	$\begin{array}{c} \alpha \neq 90^{\circ} \\ & & \\ \alpha \\ a \\ a \\ a \\ a \\ a \end{array} a$						
	Hexagonal	D _{6h}	$\gamma = 120^{\circ}$						
Cubic		O _h			a				

Primitive unit cells for cubic lattices

Face Centered Cubic (FCC)

Primitive unit cells for cubic lattices

Face Centered Cubic (FCC)

rhombic dodecahedron

Body Centered Cubic (BCC)

truncated octahedron

Primitive unit cells for cubic lattices

Face Centered Cubic (FCC)

Body Centered Cubic (BCC)

1. Unit cell parameters

cubic unit cell: a = b = c = 4.15 Å $\alpha = \beta = \gamma = 90^{\circ}$

2. Locating atoms within the unit cell

La:

2. Locating atoms within the unit cell

La:

$$\vec{r} = 0 \cdot \vec{a}_1 + 0 \cdot \vec{a}_2 + 0 \cdot \vec{a}_3 = (0,0,0)$$

B:

$$\vec{r}_1 = \frac{1}{2} \cdot \vec{a}_1 + \frac{1}{2} \cdot \vec{a}_2 + \frac{1}{5} \cdot \vec{a}_3 = (\frac{1}{2}, \frac{1}{2}, \frac{1}{5})$$

2. Locating atoms within the unit cell

La:

$$\vec{r}_1 = \frac{1}{2} \cdot \vec{a}_1 + \frac{1}{2} \cdot \vec{a}_2 + \frac{1}{5} \cdot \vec{a}_3 = (\frac{1}{2}, \frac{1}{2}, \frac{1}{5})$$

$$\vec{r}_2 = \frac{1}{5} \cdot \vec{a}_1 + \frac{1}{2} \cdot \vec{a}_2 + \frac{1}{2} \cdot \vec{a}_3 = (\frac{1}{5}, \frac{1}{2}, \frac{1}{2})$$

2. Locating atoms within the unit cell

La:

$$\vec{r}_1 = \frac{1}{2} \cdot \vec{a}_1 + \frac{1}{2} \cdot \vec{a}_2 + \frac{1}{5} \cdot \vec{a}_3 = (\frac{1}{2}, \frac{1}{2}, \frac{1}{5})$$

$$\vec{r}_2 = \frac{1}{5} \cdot \vec{a}_1 + \frac{1}{2} \cdot \vec{a}_2 + \frac{1}{2} \cdot \vec{a}_3 = (\frac{1}{5}, \frac{1}{2}, \frac{1}{2})$$

$$\vec{r}_3 = \frac{1}{2} \cdot \vec{a}_1 + \frac{1}{5} \cdot \vec{a}_2 + \frac{1}{2} \cdot \vec{a}_3 = (\frac{1}{2}, \frac{1}{5}, \frac{1}{2})$$

2. Locating atoms within the unit cell

La:

$$\vec{r}_{1} = \frac{1}{2} \cdot \vec{a}_{1} + \frac{1}{2} \cdot \vec{a}_{2} + \frac{1}{5} \cdot \vec{a}_{3} = (\frac{1}{2}, \frac{1}{2}, \frac{1}{5})$$

$$\vec{r}_{2} = \frac{1}{5} \cdot \vec{a}_{1} + \frac{1}{2} \cdot \vec{a}_{2} + \frac{1}{2} \cdot \vec{a}_{3} = (\frac{1}{5}, \frac{1}{2}, \frac{1}{2})$$

$$\vec{r}_{3} = \frac{1}{2} \cdot \vec{a}_{1} + \frac{1}{5} \cdot \vec{a}_{2} + \frac{1}{2} \cdot \vec{a}_{3} = (\frac{1}{2}, \frac{1}{5}, \frac{1}{2})$$

$$\vec{r}_{4} = \frac{4}{5} \cdot \vec{a}_{1} + \frac{1}{2} \cdot \vec{a}_{2} + \frac{1}{2} \cdot \vec{a}_{3} = (\frac{4}{5}, \frac{1}{2}, \frac{1}{2})$$

2. Locating atoms within the unit cell

La:

$$\begin{aligned} \vec{r}_1 &= \frac{1}{2} \cdot \vec{a}_1 + \frac{1}{2} \cdot \vec{a}_2 + \frac{1}{5} \cdot \vec{a}_3 = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{5}\right) \\ \vec{r}_2 &= \frac{1}{5} \cdot \vec{a}_1 + \frac{1}{2} \cdot \vec{a}_2 + \frac{1}{2} \cdot \vec{a}_3 = \left(\frac{1}{5}, \frac{1}{2}, \frac{1}{2}\right) \\ \vec{r}_3 &= \frac{1}{2} \cdot \vec{a}_1 + \frac{1}{5} \cdot \vec{a}_2 + \frac{1}{2} \cdot \vec{a}_3 = \left(\frac{1}{2}, \frac{1}{5}, \frac{1}{2}\right) \\ \vec{r}_4 &= \frac{4}{5} \cdot \vec{a}_1 + \frac{1}{2} \cdot \vec{a}_2 + \frac{1}{2} \cdot \vec{a}_3 = \left(\frac{4}{5}, \frac{1}{2}, \frac{1}{2}\right) \\ \vec{r}_5 &= \frac{1}{2} \cdot \vec{a}_1 + \frac{4}{5} \cdot \vec{a}_2 + \frac{1}{2} \cdot \vec{a}_3 = \left(\frac{1}{2}, \frac{4}{5}, \frac{1}{2}\right) \end{aligned}$$

2. Locating atoms within the unit cell

La:

$$\begin{aligned} \vec{r}_1 &= \frac{1}{2} \cdot \vec{a}_1 + \frac{1}{2} \cdot \vec{a}_2 + \frac{1}{5} \cdot \vec{a}_3 = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{5}\right) \\ \vec{r}_2 &= \frac{1}{5} \cdot \vec{a}_1 + \frac{1}{2} \cdot \vec{a}_2 + \frac{1}{2} \cdot \vec{a}_3 = \left(\frac{1}{5}, \frac{1}{2}, \frac{1}{2}\right) \\ \vec{r}_3 &= \frac{1}{2} \cdot \vec{a}_1 + \frac{1}{5} \cdot \vec{a}_2 + \frac{1}{2} \cdot \vec{a}_3 = \left(\frac{1}{2}, \frac{1}{5}, \frac{1}{2}\right) \\ \vec{r}_4 &= \frac{4}{5} \cdot \vec{a}_1 + \frac{1}{2} \cdot \vec{a}_2 + \frac{1}{2} \cdot \vec{a}_3 = \left(\frac{4}{5}, \frac{1}{2}, \frac{1}{2}\right) \\ \vec{r}_5 &= \frac{1}{2} \cdot \vec{a}_1 + \frac{4}{5} \cdot \vec{a}_2 + \frac{1}{2} \cdot \vec{a}_3 = \left(\frac{1}{2}, \frac{4}{5}, \frac{1}{2}\right) \\ \vec{r}_6 &= \frac{1}{2} \cdot \vec{a}_1 + \frac{1}{2} \cdot \vec{a}_2 + \frac{4}{5} \cdot \vec{a}_3 = \left(\frac{1}{2}, \frac{4}{5}, \frac{1}{2}\right) \end{aligned}$$

230 crystal families

2	30	0	T	he	Spa	ce G	irou	ıp L	ist	Proj	ect	by Fra	BY NC SA nk Hoffmann
P1	P-1	e E 🍘 N Thomas	z i	rz, c	Z J	5,0,0 T	Pc	Cm	Ce	P2/m P2		P2/c	P2./c 000 000
C2/c	P222	F22	2, P2,2	2 P2,2;		C222	F222	Rates	12,2,2, 14 14 14 14 14 14 14 14 14 14	Pmm2 P	nc2,	Rec2	Pma2
Pca2;	Pnc2	Pmn2	Pba2	Pna2;	Pnn2	Conm2	Cmc2,	Ccc2 #4	Amm2 Ca,Na,(CO,),	Abm2	Ama2 Ama2 Ama2 Ama2 Ama2 Ama2 Ama2 Ama2		Fmm2 CHJ, Bhom
A A A A A A A A A A A A A A A A A A A	资 黨	1. A A A A A A A A A A A A A A A A A A A	antite	Batishe	**		Padar Padar Padar Padar Padar	Buller,				\$82 885	Bulliof,
Ponen CupH-JL(NO, J.	Pinnin Article Pinavite	Pben Gatta,0,	Pbca P Pbca P Participation An	nmo Crem Maria	Conce Turbusite	Cromer Coom Mgv0, Cordierie	Crama Jahachidalte w	Cocco Fr	nmm Fddd	Immo Vite,	Ibam	bor im solorite We	nu Vice Arribe
P4	P4; Descleveite	Pinnabe	P4,	Mar 1	(4, P.4 55 55 55 55 55 55 55 55 55 5	14	P4/m	Padm	P4/n P	4/n (4/m a(0H, S ₁ ,NIW)	M./o	P422	P42;2
MB(TIQ)	P4(2)2	PA,22	Paga And And And And And And And And And And		4,5 U(45),0			BaTIO,	Hast Bist TiO		S ₁ N ₁ V054	с ,0, нете	4nc
BaGeyFy	Nažir(OH), 1-42d	Sm, Du, Sn,	RL,Nb,OF,		Li Cu(WS)	Curista, B	(NF, (UF,)	Nu(P5)	H,Quish, KN	He, Pb,Q, P4-Jabc	FelMi, Agita	AA 40 AA 20 MATE, Defs	112 110 110 110 110 110 110 110
Jasmund to P4y/nem	ka XII 14/matan	Politico, (SSO *C) 14/mem	TeTe, C	Ma,As,D ₂ ba	A.Sa, Haaganha	Fucesports/lite P	60 (ved) B, Cad R3		N2n(CH)	Ma,Fa,0,5	олен(он), Sio, P3,12	Buche Buche	Million Million Million Heto By12
Au 73-21	Indum 632	A,Ca P3m1		in_,Bu, jeQ, Se P3c1	rpsonite P31c	ine-Ce Sheldrikkin #3m	Meso, IIH, OL	Kino,	Dolumite B	664(0,) 51,7464,510 3021 F-3C1	.) Muscosite 3T	kerinite R-3c	00, P6
Quartz	Tincalconte	Ferminiperi	te Galeite	990 990 1-99 No.	Linuso,	Tournaline	Proutite	5,2F,	Coquindate Port	tandte Ruccente-(La	NO1-5	Calate	KTLEO.
-4665- Als	NGPO.	S150)			Nachaline -	HALL T					Restored	el D-Eucyatile	
Pinno (*	Place 1	Pilem	Asianc	P-5m2	P62	P-62m	62c P6/m	mm P6/m	* P6./mcm	P6s/anne	P23		m3
/2,3	Pin-3	Po-3	Fm-3	Fd-3	Im-3 f	Pa-3 (a-3	P432	P4,32	F432	Graphite 54:32 /432	P4 ₃ 32	P4;32	14:32
KPbG	540 540 540 540	Massioni,	K,PejGu(NO,IL)	Dodecasi	Na, WD, 1	Verla Vinia	BF-9-Cu	Bu,P,	P01-20		LFs.Q.	C(MHc).J.(SO.)	GJ,C,C
	5-4307	Andre Bin	Southing .		Sinte NC							BOO.	Bu (all/CHL)
							-terr lost	commendation Action		-,	(and an other states of the		

#221 *Pm*-3*m* Example – ZIF-71-RHO

More information at crystalsymmetry.wordpress.com

Crystal structures drawn v K. Momma and F. Izumi, J. Appl. Crystollogr. 2011, 44, 1

Point symmetry of LaB₆

3. Applying translational symmetry

3. Applying translational symmetry

Crystal structure

Crystal structure = lattice + basis

Lattice describes periodicity of the structure. It is determined by the unit cell (3 lengths and 3 angles)

Basis describes arrangement of atoms within a unit cell

Position of any atom inside a crystal:

$$\vec{r} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3 + x \vec{a}_1 + y \vec{a}_2 + z \vec{a}_3$$
$$\vec{R}_n \qquad \vec{r}_j$$

Crystallographic directions

In a lattice, each translation vector $\vec{R}_n = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3$ determines a direction

Directions are described with three integer Miller indices as [uvw], where u,v,w- are three smallest integer numbers, proportional to the components of \vec{R}_n .

[uvw] - direction

 $\langle uvw \rangle$ - set of equivalent directions

Crystallographic planes

Lattice plane is defined by 3 non-collinear lattice points.

- Lattice planes are described with three integer Miller indices as (hkl), where h,k,l are three smallest integer numbers, proportional to $\frac{1}{u}, \frac{1}{v}, \frac{1}{w}$.
- (*hkl*) lattice plane
- $\{hkl\}$ set of equivalent planes

Crystallographic planes

Lattice plane is defined by 3 non-collinear lattice points.

Lattice planes are described with three integer Miller indices as (hkl), where h,k,l are three smallest integer numbers, proportional to $\frac{1}{u}, \frac{1}{v}, \frac{1}{w}$.

WiSe 2024/25 | PHY-VFATCM

Crystallographic planes

Lattice plane is defined by 3 non-collinear lattice points.

- Lattice planes are described with three integer Miller indices as (hkl), where h,k,l are three smallest integer numbers, proportional to $\frac{1}{u}, \frac{1}{v}, \frac{1}{w}$.
- (*hkl*) lattice plane

Why do we need lattice planes?

A.K. Bentley, S.E. Skrabalak. J. Chem. Educ. 100, 3425 (2023)

Equivalent planes for tetragonal lattice

 $\{100\} \rightarrow (100), (010), (\overline{1}00), (0\overline{1}0)$

Miller indices of equivalent planes can be obtained as permutations

WiSe 2024/25 | **PHY-VFATCM**

 $\{100\} \rightarrow (100), (010), (\overline{1}00), (0\overline{1}0), (\overline{1}10), (1\overline{1}0)$

Miller indices of equivalent planes cannot be obtained as permutations

 x_1, x_2, x_3 - equivalent axis for the hexagonal symmetry

 $\{1\overline{1}00\} \rightarrow (10\overline{1}0), (01\overline{1}0), (\overline{1}100), (\overline{1}010), (0\overline{1}10), (1\overline{1}00)$

Miller-Bravais indices of equivalent planes can be obtained as permutations

WiSe 2024/25 | **PHY-VFATCM**

Transformation from Miller indices to
Miller-Bravais indices for directions

$$[uvw] \Longrightarrow [u'v't'w']$$

$$u\vec{a}_1 + v\vec{a}_2 + w\vec{c} = u'\vec{a}_1 + v'\vec{a}_2 + t'\vec{a}_3 + w'\vec{c}$$

$$\vec{a}_3 = -(\vec{a}_1 + \vec{a}_2)$$

$$\begin{cases}
u = u' - t' \\
v = v' - t' \\
w = w' \\
t' = -(u' + v')
\end{cases}$$

$$u' = \frac{1}{3}(2u - v)$$

$$v' = \frac{1}{3}(2v - u)$$

$$t' = -\frac{1}{3}(u + v)$$

$$w' = w$$

| WiSe 2024/25 | **PHY-VFATCM**

Fourier series

In Fourier space (reciprocal space), description is done in terms of waves.

$$f(x) = \sum_{n=-\infty}^{+\infty} c_n \cdot exp(ik_n x)$$

sum of waves with wavevectors
$$k_n = \frac{2\pi}{L}n$$

and complex amplitudes

$$c_n = \frac{1}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} f(x) \cdot exp(-ik_n x) dx$$

periodic function with period *L*

Fourier transform

In Fourier space (reciprocal space), description is done in terms of waves.

almost any function (not necessarily periodic)

WiSe 2024/25 | PHY-VFATCM

k

Dirac comb

| WiSe 2024/25 | **PHY-VFATCM**

Fourier transform of a lattice

Reciprocal space J. Als-Nielsen, D. McMorrow, Elements of Modern X-ray Scattering (2011)

WiSe 2024/25 | **PHY-VFATCM**

Fourier transform of a lattice

Reciprocal space

J. Als-Nielsen, D. McMorrow, Elements of Modern X-ray Scattering (2011)

WiSe 2024/25 | PHY-VFATCM